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According to the Smoluchowski–Kramers approximation, solution q
µ
t of the

equation µq̈
µ
t = b(q

µ
t ) − q̇

µ
t + σ(q

µ
t )Ẇt , q0 = q, q̇0 = p, where Ẇt is the White

noise, converges to the solution of equation q̇t =b(qt )+σ(qt )Ẇt , q0 =q as µ↓0.
Many asymptotic problems for the last equation were studied in recent years.
We consider relations between asymptotics for the first order equation and the
original second order equation. Homogenization, large deviations and stochas-
tic resonance, approximation of Brownian motion Wt by a smooth stochastic
process, stationary distributions are considered.

KEY WORDS: Smoluchowski–Kramers approximation; homogenization; large
deviations, stochastic resonance

1. INTRODUCTION

The motion of a particle of mass µ in a force field b(q)+σ(q)Ẇt with the
friction proportional to the velocity is defined by the Newton law:

µq̈
µ
t =b(qµt )+σ(qµt )Ẇt −αq̇µt , q

µ

0 =q ∈Rn, q̇
µ

0 =p∈Rn. (1)

Here b(q) is the deterministic part of the force, Ẇt is the standard
Gaussian white noise in Rn, σ(q) is an n×n-matrix. The coefficients b(q)
and σ(q) are assumed to be regular enough, so that the solution of (1)
exists and is unique. The term αq̇µ describes the resistance(friction) to the
motion. First, we assume that the friction coefficient α is a fixed positive
constant. Then, without loss of generality, one can put α= 1. Rewriting
(1) as a system, we have (for α=1)
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ṗ
µ
t = 1

µ
b(q

µ
t )−

1
µ
p
µ
t + 1

µ
σ(q

µ
t )Ẇt , p

µ

0 =p, q̇
µ
t =pµt , q

µ

0 =q. (2)

Together with system (2), consider the stochastic differential equation

q̇t =b(qt )+σ(qt )Ẇt , q0 =q ∈Rn. (3)

One can prove, that, for any T >0 and p,q ∈Rn,

lim
µ↓0

max
0�t�T

|qµt −qt |=0, (4)

say, in probability. This statement is called Smoluclowski–Kramers approx-
imation (of qµt by qt ).(1–6) This result is the main justification for using
first order equation (3) to describe the small particle motion. But essen-
tial part of modern research related to equation (3) concerns asymptotic
problems. For example, behavior of the stochastic process defined by (3) as
t→∞, and its stationary distribution are of interest. Another example is
given by the homogenization problem for Eq. (3): Suppose, that b(x) and
σ(x) are periodic with a small period ε. As is known, one can introduce
in this case a diffusion process with constant diffusion and drift coeffi-
cients which approximate the process with periodic coefficients. A similar
result holds if b(q) and σ(q) in (3) are space-homogenuous random fields.
But how is this approximation related to the process defined by Eq. (2)?
How is the stationary distribution for (3) related to stationary distribu-
tion of the process qµt defined in (2)? Statement (4) says nothing on these
relations.

Various large deviation problems for Eq. (3) were considered in recent
years. For example, if the matrix σ(q) is replaced by

√
ε multiplied by the

unit matrix, then exit problems and stochastic resonance(7) for the process
qt = qεt are of interest. How are these results for qεt and for qµ,εt related.
Another large deviation problem concerns the occupation times.

It is well known,(8) that if the Wiener process Wt in (3) is replaced
by a smooth process V δt approximating Wt as δ ↓ 0, then the solution qδt
of the modified equation (3) converges as δ↓0 to the solution of Straton-
ovich’s equation

˙̃qt =b(q̃t )+σ(q̃t )◦ Ẇt , q̃0 =q. (5)

But it is natural to put V δt instead of Wt in (1) or (2), and to consider
the limit of qµ.δt as both, µ and δ, tend to zero.
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We will see that the answer to some of these questions is not trivial:
The limit can depend on the way how the parameters approach zero. On
the other hand, we will see that, in certain problems, the Smoluchowski–
Kramers approximation is better than it is guaranteed by equality (4).

One should mention that the deterministic component of the force in
(1) can depend not just on qt but on q̇t as well (then the term −αq̇t in (1)
can be omitted):

µq̈
µ
t =b(q̇µt , qµt )+σ(qµt )Ẇt , q

µ

0 =q, q̇
µ

0 =p. (6)

If b(p, q) is nonlinear in p, the limit of qµt as µ↓0, in general, does
not exist. But if σ(q)=εσ̃ (q), one can consider the double limit as ε,µ↓0.
Under certain conditions, such a limit exists and can be used for descrip-
tion of some interesting effects (see(9,10)).

Finally, I mention the case when µ is fixed and the friction and diffu-
sion coefficients in (1) are small. This is an example of perturbations of a
Hamiltonian system (an oscillator). Under some assumptions, the motion
of the particle in this case has a fast and a slow components, and the lim-
iting slow motion is a diffusion process on a graph or on an open book
defined by the first integrals of the system.(11,12)

2. ITO’S INTEGRAL VERSUS STRATONOVICH’S INTEGRAL

The δ-correlated white noise in Eqs (1) or (2) describing motion of
a physical particle is an approximation for a more regular (and more
realistic) random noise which has a short but not zero correction. As is
known, if the Wiener process Wt in (3) is replaced by a process V δt with
smooth trajectories which converges to Wt uniformly on a time-interval
[0, T ] as δ ↓ 0, and qδt is the solution of such a modified equation, then
qδt converges uniformly on [0, T ] to the solution of Eq (3) with stochas-
tic term understood on the Stratonovich sense.(5,8) But if qδt is considered
as the position of a physical particle at time t , we, actually, should put
V δt instead of Wt in Eqs (1) or (2), but not in (3), and consider the
two-parameter asymptotic problem as µ, δ ↓ 0. The function qδt in (2) is
continuously differentiable in t . Therefore, Stratonovich’s and Ito’s inter-
pretations of Eq. (2) coincide. But which stochastic integral should be con-
sidered in (3) as an approximation for qδt ,0<µ, δ�1? It turns out that the
answer depends on the way how µ and δ approach zero.

First, we need some auxiliary bounds. Consider the equation

µq̈
µ
t =b(t, qµt )+σ(t, qµt )Ẇt − q̇µt , q

µ

0 =q, q̇
µ

0 =p. (7)
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We assume that b(t, q) and σ(t, q) a continuous and Lipschitz con-
tinuous in q. Besides, assume, for brevity, that b(t, q) and σ(t, q) are
bounded uniformly in t and q. Let qt be defined by equation

q̇t =b(t, qt )+σ(t, qt )Ẇt , q0 =q. (8)

Lemma 1. Let qµt and qt be defined by Eqs (7) and (8), respec-
tively.

(i) Assume, first, that σ(t, q)≡0, Then for any T >0,

max
0�t�T

|qµt −qt |� eKT µ[T sup
0�t�T ,q∈Rn

|b(t, q)|+ |p|],

where K is the Lipschitz constant of b(t, q) in q ∈Rn.

(ii) There exists c1>0 defined by T ,n and the Lipschitz constant K
of the coefficients b(t, q) and σ(t, q), such that

max
0�t�T

|qµt −qt |2 � c1µ[|p|2+‖b ‖2 +‖σσ ∗ ‖],

here ‖b ‖= sup0�t<∞,q∈Rn,1�i�n |bi(t, q)|, ‖σσ ∗ ‖ = sup1�i,j�n,t∈[0,∞),q∈Rn∑n
k=1 |σik(t, q)σjk(t, q)|.
(iii) For any h>0 and T >0 there exists c2 = c2(c1, n) such that

P

{
max

0�t�T
|qµt −qt |>h

}
� µ

h2
T c2[|p|2+‖b ‖2 +‖σσ ∗ ‖].

Proof. Put pµt = q̇
µ
t , where qµt is the solution of Eq (7). It follows

from (7), that:

p
µ
t =pe− t

µ + 1
µ
e
− t
µ

∫ t

0
e
s
µ b(s, qµs )ds+

1
µ
e
− t
µ

∫ t

0
e
s
µ σ (s, qµs )dWs. (9)

We derive from (9), after integrating by part,

q
µ
t = q+µp(1− e− t

µ )

+
∫ t

0
b(s, qµs )ds+

∫ t

0
σ(s, q

µ
t )dWs − e−

t
µ

∫ t

0
b(s, qµs )e

s
µ ds

− e− t
µ

∫ t

0
e
s
µ σ (s, qµs )dWs. (10)



Smoluchowski–Kramers Approximation 621

Since |e− t
µ

∫ t
0 e

s
µ b(s, q

µ
s )ds| � |e− t

µ µ
∫ t
µ

0 esb(µs, q
µ
µs)ds| �‖ b ‖µ, using

Eqs (8), (10) and the Gronwell lemma, we derive the first statement of
Lemma 1.

The second bound follows from (8), (10) and Gronwell lemma, if one
takes into account the properties of Ito’s stochastic integral. The last state-
ment follows from (ii) and the Kolmogorov-Doob inequality.

Remark. Note, that equality (4) follows from Lemma 1. One can
also derive from (10) and (8) the main term of the difference qµt − qt as
µ↓0.

Let, for brevity, n=1, and

V δt = 1√
δ

∫ t

0
ξs/δ ds.

Here ξs is a mean zero stationary Gaussian process with a fast enough
decreasing smooth correlation function R(|t |), such that max0�t�T |Wt −
V δt |→0 as δ↓0 with probability 1. As is known,(8) for any µ>0 the solu-
tion (p

µ,δ
t , q

µ,δ
t )of the system

µṗ
µ,δ
t =b(qµ,δt )−pµ,δt +σ(qµ,δt )

dV δt

dt
, q̇

µ,δ
t =pµ,δt , q

µ,δ

0 =q, p
µ,δ

0 =p,
(11)

converges to the solution of (2) as δ ↓ 0. Thus, a positive function f̃ =
f̃ (µ,h) exists such that

P

{
max

0�t�T
|qµ,δt −qµt |> h

2

}
� h

2
(12)

if δ� f̃ (µ,h). One can write down f̃ (µ,h) in an explicit form, but it is
not our goal here.

The function qµt in (2) has a continuous derivative pµt . Therefore the
Ito integral and the Stratouovich integral in (2) coincide, and one can con-
sider (2) as the Ito equation. On the other hand, it follows from the last
statement of Lemma 1, that

P

{
max

0�t�T
|qµt −qt |> h2

}
� c3

4µ
h2
, (13)

where c3 =T c2[p2+‖b ‖2 +‖σσ ∗ ‖].
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Put

f (µ)= f̃ (µ,2(c3µ)
1/3).

Then (12) and (13) imply

P

{
max

0�t�T
|qµ,δt −qt |>h

}
� P

{
max

0�t�T
|qµ,δt −qµt |> h

2

}

+ P

{
max

0�t�T
|qµt −qt |> h2

}
�h

if δ<f (µ) and µ<h3/8c3. This means that qµ,δt converges to the solution
of (3) where the stochastic term is understood in the Ito sense, if µ, δ ↓ 0
and δ<f (µ).

Let us show now that if µ, δ↓0 and µ tends to zero fast enough com-
pared to δ, then qµ,δt converges to the solution of (3) with Stratonouvich’s
stochastic term.

Put

b̃(t, q)=b(q)+σ(q)dV
δ
t

dt
=b(q)+ 1√

δ
σ (q)ξt/δ.

It follows from the bounds for maximum of a stationary process (see
ref. 13, Ch. 12), that

lim
T→∞

P

{
max

0�t�T
|ξt |<c

√
ln T

}
=1

for some constant c <∞ which is defined by the correlation function.
Thus, for 0� t�T

|b̃(t, q)|�‖b ‖+c4 ‖σ ‖
√| ln δ|√

δ
,

|b̃(t, q1)− b̃(t, q2)|� K̃|q1 −q2|,

where

K̃= c4K

√| ln δ|√
δ

,

with probability close to 1 as δ is small enough. Then, applying the first
statement of Lemma 1, we have
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max
0�t�T

|qµ,δt −q0,δ
t |� eK̃T µ

√
| ln δ|
δ

=µ(δ−1| ln δ|) 1
2 exp{c4KT (δ

−1| ln δ|)1/2}.

with probability close to 1 if δ is small enough. Here q0,δ
t is the solution

of the equation

q̇
0,δ
t =b(q0,δ

t )+σ(q0,δ
t )V̇ δt , q

0,δ
0 =q.

The last bound implies, that

lim
µ,δ↓0

max
0�t�T

|qµ,δt −q0,δ
t |=0

in probability if µ and δ tend to zero so that lim µ exp{ 1
δ
}=0.

On the other hand, as is shown in Ref. 8, q0,δ
t converges in proba-

bility uniformly on [0, T ] to the solution of Stratonovich’s equation (5) as
δ↓0.

We sum up our result in

Proposition 1. The process qµ,δt defined by (11) converges in prob-
ability uniformly on [0, T ] to the solution of (3) with Ito’s stochastic term
as µ, δ ↓ 0 so that δ < f (µ). If µ, δ ↓ 0 and limµe1/δ = 0, then q

µ,δ
t con-

verges to the solution of (3) with Stratonovich’s stochastic term.
In particular, if, first, δ ↓ 0 and then µ ↓ 0, the limit is the solution

of Ito’s equation (3). If, first µ↓ 0 and then δ ↓ 0, qµ,δt converges to the
solution of Eq (3) in the Stratonovich sense.

3. STATIONARY DISTRIBUTION

Here we shortly consider relation between stationary distributions for
processes qµt and qt defined by Eqs (2) and (3), respectively.

Consider first the case of linear oscillator with one degree of freedom
perturbed by the white noise

µq̈
µ
t + q̇µt +qµt = Ẇt . (14)

One can conclude from (14) that the stationary distribution is the
mean zero Gaussian distribution with the variance

σ 2
µ= 1

π

∫ +∞

−∞
dλ

(1−µλ2)2 +λ2
. (15)

It is clear from this formula, that limµ↓0 σ
2
µ= (1/π) ∫ +∞

−∞ dλ/(1+λ2)=
1. Thus the stationary distribution for q

µ
t converges to the stationary
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distribution of qt as µ ↓ 0. But, actually, integral (15) can be calculated
explicitly using the residue theory, and it turns out that σ 2

µ = 1 for any
µ>0. So that the stationary distribution for qµt defined by (14) coincides
with stationary distribution of qt for any µ>0.

This is a manifestation of a more general result: If the field b(q) is
potential with respect to white noise, so that the system has the form

ṗ
µ
t =− 1

µ
�F(qµt )−

1
µ
p
µ
t + 1

µ
Ẇt , q̇

µ
t =pµt , p

µ

0 =p, q
µ

0 =q,
(16)

then the invariant density of qt has the form C−1 exp{−2F(q)}, provided
that C=∫

Rn
exp{−2F(q)}dq<∞. This follows from a well-known fact that

the Boltzmann distribution Aµ exp{−(µ2p2 + 2F(q))} is invariant for the
2n-dimensional Markov process (pµt , q

µ
t ).

4. HOMOGENIZATION

Consider the process qµ,εt defined by equations

µṗ
µ,ε
t =b(qµ,εt ε−1)+σ(qµ,εt ε−1)Ẇt−pµ,εt , q̇

µ,ε
t =pµ,εt , p

µ,ε

0 =p, q
µ,ε

0 =q.
(17)

If the coefficients b(q) and σ(q) are periodic or form a space-homo-
geneous random field with good enough mixing properties and the matrix
a(q)= σ(q)σ ∗(q) is uniformly non-degenerated, one can expect that for
0<ε�1 the process qµ,εt is close in the weak topology to the solution of
Eq (17) with b and σ replaced by constant b̄ and σ̄ . Such an approxima-
tion for Eq (3) and for corresponding PDEs was studied intensively.(14–16)

In particular, if b(q) and σ(q) are 1-periodic in each variable, the
effective coefficients b̄ and σ̄ for Eq (3) should be calculated in the fol-
lowing way. Consider the diffusion process on n-dimensional unit torus T n

governed by the equation

˙̃qt =σ(q̃)Ẇt .

Since the matrix a(q)=σ(q)σ ∗(q) is assumed to be non-degenerate, such a
process on T n has a unique invariant measure, and its density m(q) is the
unique normalized solution of the Fokker–Plank (Forward Kolmogorov)
equation
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n∑
i,j=1

∂2

∂qi∂qj
(aij (q)m(q))=0,

∫
T n
m(q)dq=1.

Then the effective b̄ and σ̄ are given as follows((14)):

b̄=
∫
T n
b(q)m(q)=1, σ̄ = ā 1

2 , ā=
∫
T n
a(q)m(q)dq.

In particular, for n = 1, m(q) = 1
a(q)

(
∫ 1

0
dq
a(q)

)−1, ā = (
∫ 1

0
dq
a(q)

)−1,

b̄= ∫ 1
0
b(q)
a(q)

dq � ā.

If K is the Lipschitz constant for b(q) and σ(q), then the Lipschitz
constant for b(qε−1) and σ(qε−1) is Kε−1. Let q0,ε

t be the solution of the
equation

q̇
0,ε
t =b(q0,ε

t ε−1)+σ(q0,ε
t ε−1)Ẇt , q

0,ε
0 =q. (18)

It follows from Lemma 1, that

max
0�t�T

|qµ,εt −q0,ε
t |→0 (19)

in probability as µ, ε ↓ 0 so that, for any c > 0, µ exp{cε−2} → 0. On the
other hand, process q0,ε

t converges as ε↓0(weakly in the space of contin-
uous functions on [0, T ]) to the Gaussian process q̄t ,

˙̄qt = b̄+ ā 1
2Wt, q̄0 =q

with b̄ and ā defined above. This statement together with (19) implies
that q

µ,ε
t converges weakly to q̄t as µ, ε ↓ 0 so that, for any c > 0,

µ exp{cε−2}→0.
We will show now, that if ε,µ ↓ 0 and ε tends to zero much faster

than µ, the weak limit of qµ,εt is different. First we need some auxiliary
bounds. We present them, for brevity, in the one-dimensional case.

Lemma 2. Let (pµ,εt , q
µ,ε
t ) be the solution of Eq (17), n=1.

(i) For any T >0,

lim
µ↓0

Pp,q

{
max

0�t�T
|pµ,εt |>

√
lnµ−1

µ

}
=0. (20)
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(ii) There exists c>0 such that

Ep,q |pµ,εt −p|4 � cµ−4t2. (21)

To prove the first statement, note that the measure Mµ,ε in the space of
trajectories of the process (pµ,εt , q

µ,ε
t ) on the time interval [0, T ] is abso-

lutely continuous with respect the measure M̄µ,ε corresponding to the
process with b(q)≡0.

The density

dMµ,ε

dM̄µ,ε
= exp

{∫ T

0
σ−1b dWs − 1

2

∫ T

0
(σ−1b)2ds

}

is independent of µ. Using the random change of time and comparison
arguments, one can see that it is sufficient to prove (20) for the process p̄t
such that

˙̄pµt =− c̃

µ
p̄
µ
t + 1

µ
Ẇt , p̄

µ

0 =p,

where c̃ is an appropriate positive constant. Bound (20) for process p̄µt can
be derived from the iterated logarithm law.

The second statement of Lemma 2 follows from (9) and the standard
bounds for stochastic integrals.

Lemma 3. The family of stochastic process qµ,εt ,0� t�T , is weakly
tight in C0T .

Proof. It follows from (17), that

q
µ,ε
t+h−qµ,εt =

∫ t+h

t

pµ,εs ds=−µ(pµ,εt+h−pµ,εt )

+
∫ t+h

t

b(ε−1qµ,εs )ds+
∫ t+h

t

σ (ε−1qµ,εs )dWs.

Taking into account (21), this equality implies, that a constant C
exists such that

Ep,q |qµ,εt+h−qµ,εt |4 �Ch2.

The last bound, as is known, provides weak tightness.

Lemma 4. Let χ[−u,u](q) be the indicator function of [−u,u] ⊂R1,
T >0. A constant C exists such that, for any µ, ε∈ (0,1],
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E

∫ T

0
χ[−u,u](p

µ,ε
s )ds�Cu1/2µ1/4 (22)

Proof. If b≡0 and σ ≡1, pµ,εt is a Markovian Guassian process. One
can write down its transition density explicitly and obtain the bound

E

∫ T

0
χ[ −u,u](Pµ,εs )ds� C̃uµ1/2.

This bound implies (22), if one takes into account that the general case
can be reduced to the case b≡0 and σ ≡1 by a random time change and
absolutely continuous change of measure in the space of trajectories.

Proposition 2. Let (p
µ,ε
t , q

µ,ε
t ) be the solution of system (17).

Assume that the functions b(q) and σ(q) are 1-periodic in each vari-
able, twice continuously differentiable, and the matrix a(q) = (aij (q)) =
σ(q)σ ∗(q) is non-degenerate. Let T n be n-dimensional unit torus.

(i) Suppose that µ, ε ↓0 so that for any C>0, µ exp
{
Cε−2

}→0.
Then, for any T > 0, process qµ,εt converge weakly in C0T to the

Gaussian Markov process

q̄t =q+ b̄t+ σ̄Wt .

Here b̄= ∫
T n
b(q)m(q)dq, σ̄ = (̄a)1/2, ā= ∫

T n
a(q)m(q)dq, where m(q)

is the unique solution of the problem

n∑
i,j=1

∂2

∂qi∂qj
(aij (q)m(q))=0,

∫
T n
m(q)dq=1.

(ii) Suppose that µ, ε ↓ 0 so that εµ−2 ln2µ→ 0. Then the process
q
µ,ε
t converge weakly to the Gaussian Markov process,

q̂ t =q+ q̂t+ σ̂Wt ,

where b̂= ∫
T n
b(q)dq, σ̂ = (â)1/2, â= ∫

T n
a(q)dq.

A sketch of the proof. For the first statement was given above. A
sketch of the proof for the second statement we give in one dimensional
case. Choose ∆> 0 so small that, on any interval of length ∆ belonging
to [0, T ], qµ,εt changes just a little with probability close to 1.
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To choose such a ∆, note that the first of Eq. (17) implies:

p
µ,ε
t0+t −p

µ,ε
t0

= − 1
µ

∫ t0+t

t0

pµ,εs ds+ 1
µ

∫ t0+t

t0

b(qµ,εs (ε−1qµ,εs ) ds

+ 1
µ

∫ t0+t

t0

σ(b(qµ,εs ε−1)dWs.

Using Lemma 2i and Levy’s Hölder continuity of the Wiener process
(see ref. 17, §1.9), we conclude from the last equality, that

max
t0∈[0,T ],0<t<∆

|Pµ,εt0+t −P
µ,ε
t0

|<C[
∆

√
ln µ−1

µ2
+

√
∆ ln∆−1

µ
]

with probability close to 1 as ∆ and µ are small enough. This inequality
implies that

max
t0∈[0,T ],0<t<∆

|Pµ,εt0+t −P
µ,ε
t0

|�1, if ∆= µ2

ln2µ
and µ<<1.

This means, that on any time interval of length ∆, q̇µ,εt = p
µ,ε
t is

close to a constant. Therefore, taking into account (22), for any contin-
uous 1-periodic function f (q)

1
∆

∫ t0+∆

t0

f (qµ,εs ε−1)ds−→
∫ 1

0
f (q)dq (23)

as µ ↓ 0, and ε�∆= µ2/ln2µ << 1. Convergence of finite-dimen-
sional distributions of the process qµ,εs to q̂t can be derived from (23). This
together with Lemma 3 implies weak convergence of qµ,εs to q̂t in C0T .

Remark. In the multidimensional case, the proof of (23) is more
sophisticated because the dynamical system q̇ = p on T n, where p is a
constant vector, can have non-unique invariant measure. To overcome this
difficulty, one should use the fact that, inspite of the degeneration, the
process (pµ,εt , qµ,εt ) has a positive transition density and spends time zero
in the set where the first coordinate has rationally dependent components
(compare with ref. 18).

5. LARGE DEVIATIONS

Relations between large deviation problems for systems (2) and (3)
when the noise term is small are considered in this section. In particular,
we discuss the exit problem and stochastic resonance.
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Let the process qµ,εt is defined by the system

µṗ
µ,ε
t =b(qµ,εt )−pµ,εt +√

εσ (q
µ,ε
t )Ẇt , p

µ,ε

0 =p∈Rn, (24)

q̇
µ,ε
t =pµ,εt , q

µ,ε

0 =q ∈Rn, 0<ε�1.

For every ε > 0, the Smoluchowski–Kramers approximation q
(ε)
t is

given by the equation

q̇
(ε)
t =b(q(ε)t )+√

εσ (q
(ε)
t )Ẇt , q

(ε)

0 =q. (25)

We assume that the coefficients b(q) and σ(q) are smooth enough
and bounded; deta(q)� ao > 0 where a(q)= σ(q)σ ∗(q). As is known,(7)

the action functional for the family q
(ε)
t in C0T as ε ↓ 0 has the form

ε−1S0T (ϕ), where

SoT (ϕ)=
{

1
2

∫ T
0 (a

−1(ϕs)(ϕ̇s −b(ϕs)), ϕ̇s −b(ϕs))ds, ϕ0 =q,ϕ is abs. cont.
+∞, for the rest ofC0T .

Let K ∈Rn be an asymptotically stable equilibrium for the dynamical
system q

(0)
t in Rn defined by (25) with ε= 0, and G⊂Rn be a bounded

domain with smooth boundary ∂G attracted to K. Let b(q) �n(q)|∂G < 0,
where n(q) is the exterior normal to ∂G. Denote by τ (ε) the first exit time
of q(ε)t from G: τ (ε)=min{t :q(ε)t ∈ ∂G}.

Introduce the quasi-potential for process q(ε)t (with respect to the equi-
librium K ∈G⊂R):

V (q)= inf{S0T (ϕ) :ϕ ∈C0T , ϕ0 =K, ϕT =q, T >0}

Then (see ref. 11), ε ln τ (ε)→Vo = minq∈∂G V (q) in probability, start-
ing from any q ∈G. If q∗ ∈ ∂G is the unique minimum of V (q) on ∂G,
then q

(ε)

τ (ε)
→ q∗ in probability as ε ↓ 0. Moreover, if ϕ∗

t is the unique (up
to a time shift) extremal of the action functional on the set of curves con-
necting K and q∗, then the last part of the trajectory q(ε)t before exiting G
belongs to a small neighborhood of ϕ∗ with probability close to 1 as ε is
small enough. In the case of unit matrix a(x) and potential field b(q)=
−∇F(q), V (q)= 2F(q) for q ∈ {x ∈G :V (x)�Vo}, if the potential F(q) is
normalized by the conditions F(K)=0 (see ref. 11, Ch. 4).

Suppose the non-perturbed system q
(0)
t is generic and has several as-

ymptotically stable equilibriums K1, . . . ,Km, so that any point of Rn,
besides the separatrices is attracted to one of Ki , then the long-time evo-
lution of q(ε)t , for 0<ε�1 is defined by the numbers
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Vij = inf{S0T (ϕ) :ϕ0 =Ki,ϕT =Kj , T >0}.

In particular, this numbers define the hierarchy of cycles, metastable states,
asymptotics of the transition times, sub-limiting distributions(19). If b and
σ are slowly changing in time, then the numbers Vij also depend on
this slow time, and their evolution (or, more precisely, bifurcations in
the structure of the hierarchy of cycles) defines stochastic-resonance-type
effects.(5)

Consider now the process qµ,εt ,0� t�T , defined by (24), as µ is fixed
and ε↓0. Taking into account that qµ,εt is continuously differentiable, one
can check that the transformation Wt → q

µ,ε
t defined by (24) is continu-

ous in C0T . This, according to results from (11), Section3.3, implies that the
action functional for qµ,εt in C0T as ε↓0 has the form ε−1S

µ

0T (ϕ), where

S
µ
oT (ϕ)=




1
2

∫ T
0 (a

−1(ϕs)(µϕ̈s + ϕ̇s −b(ϕs)),µϕ̈s + ϕ̇s −b(ϕs))ds,
if ϕ̇ is abs. cont. andϕ0 =q, ϕ̇0 =p,
+∞, for the rest ofC0T .

We consider in more detail the case of unit diffusion matrix and
potential fields b(x): a(q)= I , b(q)= −∇F(q), q ∈Rn. Note, that if K is
an equilibrium of the system q

(0)
t , then (0,K) is an equilibrium for system

(24) with ε= 0. Moreover, if K is asymptotically stable for q(0)t , (0,K) is
asymptotically stable for (pµ,0t , q

µ,0
t ). If a domain G⊂Rn is attracted to

K for q(0)t , then for (pµ,0t , q
µ,0
t ), the domain {(p, q), q ∈G, |p|<A} ⊂R2n

is attracted to (0,K)∈R2n for any A>0 if µ=µ(A) is small enough. One
can introduce quasi-potential (with respect to the equilibrium K):

V µ(q)= inf
{
S
µ

0T (ϕ) :ϕ0 =k, ϕ̇0 =0, ϕT =q, T >0
}
. (26)

The diffusion process (pµ,εt , q
µ,ε
t ) for any µ, ε > 0, although it is de-

generate, has strictly positive for t >0 transition density P(t;po, qo;p1, q1).
The last remark allows to obtain results concerning the exit problem for
q
µ,ε
t in the way similar to the case of process q(ε)t .(11) Consider a domain
G⊂Rn such that G ∪ ∂G is attracted to the equlibrium K for the vec-
tor field b(q) and b(q) � n(q)|∂G < 0. Put Ĝ= {

(p, q)∈R2n :q ∈G}
, τµ,ε =

min
{
t :qµ,εt ∈ ∂G}

.

Proposition 3. Let a(q)=σ(q)σ ∗(q) be the unit matrix and b(q)=
−∇F(q), F (K)= 0. Let q ∈G and the trajectory (p

µ,0
t , q

µ,0
t ) defined by

(24) with ε= 0, pµ,00 =p,q
µ,ε

0 = q, tends to (0,K) as t → ∞ not leaving
the domain G.
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Then

lim
ε↓0

ε ln τµ,ε= lim
ε↓0

ε ln Ep,qτµ,ε= min
q∈∂G

V µ(q). (27)

If V µ(q) has on ∂G a unique minimum at q∗ ∈∂G, then qµ,ετµ,ε →q∗ in
probability as ε↓0. For any µ>0, q ∈{q ∈G :V µ(q) �minz∈∂G V µ(z),

V µ(q)=2F(q), min
z∈∂G

V µ(z)=2 min
z∈∂G

F (z)=Vo, (28)

q∗ is independent of µ. Thus the logarithnic asymptotic of the exit time
and of the exit position as ε↓0 for the processes qµ,εt and for its Smolu-
chowski–Krammers approximation q

(ε)
t are the same.

Proof. of equality (27) is similar to the proof of corresponding state-
ment for q(ε)t (ref. 11, Ch. 4), and we omit it. To prove (28), note that

∫ T

0
|µϕ̈t + ϕ̇t +∇F(ϕt )|2dt

=
∫ T

0
|µϕ̈t − ϕ̇t +∇F(ϕt )|2dt+4

∫ T

0
ϕ̇t �∇F(ϕt )dt+4µ

∫ T

0
ϕ̈t � ϕ̇t dt

=
∫ T

0
|µϕ̈t − ϕ̇t +∇F(ϕt )|2dt+4(F (ϕT )−F(ϕ0))+2µ(|ϕ̇T |2−|ϕ̇0|2). (29)

If ψµt is the solution of the problem

µψ̈
µ
t + ψ̇µt +∇F(ψµt )=0, ψ

µ

0 =q, ψ̇
µ

0 =0,

then the function ϕ
µ
t =ψµT−t satisfies the equation

µϕ̈
µ
t − ϕ̇µt +∇F(ϕµt )=0, ϕ

µ
T =q, ϕ̇µT =0.

It follows from (29), that

∫ T

0
|µϕ̈µt + ϕ̇µt +∇F(ϕµt )|2dt==4(F (q)−F(ψµT ))+2µ(|ψ̇µT |2). (30)

Taking into account that the point (0, q) is attracted to the equi-
librium (0,K) of the system (p

µ,0
t , q

µ,0
t ), we conclude that ψµT →K and

|ψ̇µT |t → o as T → ∞. This remarks together with (26), (29) and (30)
implies that V µ(q)=2F(q), if we take into account the form of the action
functional Sµ0T (ϕ) given above.
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Remark. Although the asymptotic exit point and the logatithnic
asymptotics of the exit time for q(ε)t and q

µ,ε
t are the same, the extremals

are different. So that the last part of trajectory qµ,εt , before it exits domain
G, for fixed µ and ε<<1, is situated, after an appropriate time shift (com-
pare with citeFW1, Ch.4), near the extremal defined by the equation

µ ¨̂ϕµt − ˙̂ϕµt +∇F(ϕ̂µt )=0, −∞<t <0, ϕ̂µ0 =q∗, ˙̂ϕµ0 =0.

In particular, in one-dimensional case, the extremal for qεt approaches
monotonically one of the ends of the intervalG. The extremal for qµ,εt ,µ>0,
will oscillate near the equilibrium with increasing amplitude until it hits one
of the ends of interval G. The extremals come close as µ↓0.

Consider now the case of several stable equilibriums of the vector
field b(q), q ∈Rn. Let, as in Proposition 4, a(q)≡ I , b(q)= −∇F(q). We
assume that lim|q|→∞ F(q) = ∞, so that each trajectory qt of the field
b(q), excluding separatrices, approaches as t → ∞ one of the local min-
ima q1, . . . , ql ∈Rn of the potential. System (24) with ε= 0, in this case,
has asymptotically stable equiliberiums (0, q1), . . . , (0, ql). Let µ be fixed
and ε ↓ 0. We write T λε � e

λ
ε , if limε↓0 ε ln T λε = λ. For any initial point

x = (p, q)∈R2n and any time scale T λε � e λε , λ> 0, (excluding a finite set
of values λ and initial points belonging to separatrices), one can point out
a stable equilibrium M(x,λ)= (0, qm(x,λ)) which is called metastable states
for given x= (p, q) and λ>0, such that the trajectory qµ,εt spends most of
the time during time interval [0, T λε ] in a small neighborhood of qm(x,λ).
More precisely: in generic case, there exists one equilibrium qm(x,λ) such
that for any δ>0,

lim
ε↓0

1
T λε

∫ T λε

0
χδ(q

µ,ε
t )dt=1,

where χδ is the indicator function of δ-neighborhood of qm(x,λ) in
Rn.(11,19)

The state M(x,λ) is defined by the numbers

V
µ
ij = inf

{
S
µ

0T (ϕ) :ϕ0 =qi, ϕ̇0 =0, ϕT =qj , T >0
}

and by the initial point x= (p, q).
Suppose that the trajectory (p

µ,0
t , q

µ,0
t ) starting at an initial point

(p, q) is attracted to the equilibrium (0, qk) such that the trajectory qt of
the system q̇t =b(qt ), q0 =q, is attracted to the equilibrium qk of the field
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b(q) in Rn. Note, that for any p there exists µo>0 such that this assump-
tion is satisfied for µ<µo. Moreover, this is true for any µ>0, if |p|<ρo
for some ρo = ρo(q). One can derive from Proposition 4, that the num-
bers V µij are actually independent of µ. Therefore, if (pµ,0t , q

µ,0
t ), p

µ,0
0 =

p,q
µ,0
0 = q is attracted to (0, qk) and qt is attracted to qk, then metasta-

ble states for qµ,εt , q
µ,ε

0 = q, q̇µ,ε0 =p, for any time scale T λε , coincide with
those for Smoluchowski–Krammers approximation q

(ε)
t , q

(ε)

0 =q.
Finally, I will make a short remark concerning stochastic resonance

for the original system and its Smoluchowski–Krammers approximation.
Suppose that the field b is slowly changing: b=−∇qF ( tT λε , q). Let, for

brevity, the potential F(z, q) be 1-periodic in z, F(z, q)=F1(q) for 0�z<
t1<1 and F(z, q)=F2(q) for t1 �z<1. Moreover, let F1(q) and F2(q) have
the same minimum points q1, . . . , ql . Denote by Mi(q, λ) the metasatble
state for the process q̃(ε)t ,

˙̃q(ε)t =−∇Fi(q̃(ε)t )+√
εẆt , q̃

(ε)

0 =q ∈Rn

in the time interval [0, exp{λ
ε
}]. Let the initial conditions q

µ,ε

0 , q̇
µ,ε

0 be
such that (pµ,εt , q

µ,ε
t ) is attracted to (0, qk), k ∈ {1, . . . , l}. It follows from

our considerations , that qµ,εt during time interval [0, t1T λε ], T λε � exp{λ
ε
},

spends most of the time near M(0) = M1(qk, λ). Then the trajectory
q
µ,ε
t switches to M(1) =M2(M

(0), λ)=M2(M1(qk, λ), λ) for t ∈ [t1T λε , T
λ
ε ].

Then, for t ∈ [T λε , (1 + t1)T
λ
ε ], qµ,εt spends most of the time near M(2) =

M1(M
(1), λ) and, for t ∈ [(1 + t1)T λε ,2T λε ], near M(3)=M2(M

(2), λ) and so
on. Each M(k) is one of the equilibriums q1, . . . , ql . Since the number of
the equilibriums is finite sequence M(k) starts to repeat itself. This means
that the trajectory qµ,εt for ε small enough is close (say, in the L2-norm)
to a periodic step function which has values in the set {q1, . . . , ql}. The
period of these oscillations is an integer which can be greater than 1 but
always less than the number of stable equilibriums l. Since the metasta-
ble states for qµ,εt and q

(ε)
t are the same, the trajectories qµ,εt and q

(ε)
t

are close to the same periodic function. Thus the stochastic-resonance-type
effects for qµ,εt and q

(ε)
t are the same.

If the field b(q)is not potential, the quasi-dterministic approximation
(19) for system (24) with stable attractors (0, q1), . . . , (0, ql) is defined by
the numbers V µij introduced above. In general, V µij �=Vij for µ>0, but one
can prove that limµ↓0 V

µ
ij = Vij . This implies that (in generic case) there

exists µ0>0 such that, for 0<µ<µ0, the quasi-deterministic approxima-
tion for qµ,εt and q(ε)t is the same. Therefore, if b(q) is slowly changing in
time, stochastic-resonance-type effects for qµ,εt and q(ε)t will be, in a sense,
also the same.
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A similar approach allows to describe relations between large devia-
tion effects, such as stochastic resonance, for qµ,εt and q

(ε)
t , if the white

noise in (24) is replaced by some other types of stochastic processes
(compare with ref. 19).
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